
- Lua Tutorial
- Lua - Home
- Lua Basics
- Lua - Overview
- Lua - Environment
- Lua - Basic Syntax
- Lua - Comments
- Lua - Print Hello World
- Lua - Variables
- Lua - Data Types
- Lua - Operators
- Lua - Loops
- Lua - Generic For
- Lua - Decision Making
- Lua - Date and Time
- Lua Functions
- Lua - Functions
- Lua - Multiple Results
- Lua - Named Arguments
- Lua - Default/Optional Arguments
- Lua - Closures
- Lua - Uses of Closures
- Lua - Local Functions
- Lua - Anonymous Functions
- Lua - Functions in Table
- Lua - Proper Tail Calls
- Lua Strings
- Lua - Strings
- Lua - String Concatenation
- Lua - Loop Through String
- Lua - String to Int
- Lua - Split String
- Lua - Check String is NULL
- Lua Arrays
- Lua - Arrays
- Lua - Multi-dimensional Arrays
- Lua - Array Length
- Lua - Iterating Over Arrays
- Lua - Slicing Arrays
- Lua - Sorting Arrays
- Lua - Merging Arrays
- Lua - Sparse Arrays
- Lua - Searching Arrays
- Lua - Resizing Arrays
- Lua - Array to String Conversion
- Lua - Array as Stack
- Lua - Array as Queue
- Lua - Array with Metatables
- Lua - Immutable Arrays
- Lua - Shuffling Arrays
- Lua Iterators
- Lua - Iterators
- Lua - Stateless Iterators
- Lua - Stateful Iterators
- Lua - Built-in Iterators
- Lua - Custom Iterators
- Lua - Iterator Closures
- Lua - Infinite Iterators
- Lua - File Iterators
- Lua - Table Iterators
- Lua - Numeric Iterators
- Lua - Reverse Iterators
- Lua - Filter Iterators
- Lua - Range Iterators
- Lua - Chaining Iterators
- Lua Tables
- Lua - Tables
- Lua - Tables as Arrays
- Lua - Tables as Dictionaries
- Lua - Tables as Sets
- Lua - Table Length
- Lua - Table Iteration
- Lua - Table Constructors
- Lua - Loop through Table
- Lua - Merge Tables
- Lua - Nested Tables
- Lua - Accessing Table Fields
- Lua - Copy Table by Value
- Lua - Get Entries from Table
- Lua - Table Metatables
- Lua - Tables as Objects
- Lua - Table Inheritance
- Lua - Table Cloning
- Lua - Table Sorting
- Lua - Table Searching
- Lua - Table Serialization
- Lua - Weak Tables
- Lua - Table Memory Management
- Lua - Tables as Stacks
- Lua - Tables as Queues
- Lua - Sparse Tables
- Lua Lists
- Lua - Lists
- Lua - Inserting Elements into Lists
- Lua - Removing Elements from Lists
- Lua - Iterating Over Lists
- Lua - Reverse Iterating Over Lists
- Lua - Accessing List Elements
- Lua - Modifying List Elements
- Lua - List Length
- Lua - Concatenate Lists
- Lua - Slicing Lists
- Lua - Sorting Lists
- Lua - Reversing Lists
- Lua - Searching in Lists
- Lua - Shuffling List
- Lua - Multi-dimensional Lists
- Lua - Sparse Lists
- Lua - Lists as Stacks
- Lua - Lists as Queues
- Lua - Functional Operations on Lists
- Lua - Immutable Lists
- Lua - List Serialization
- Lua - Metatables with Lists
- Lua Modules
- Lua - Modules
- Lua - Returning Functions from Modules
- Lua - Returning Functions Table from Modules
- Lua - Module Scope
- Lua - SubModule
- Lua - Module Caching
- Lua - Custom Module Loaders
- Lua - Namespaces
- Lua - Singleton Modules
- Lua - Sharing State Between Modules
- Lua - Module Versioning
- Lua Metatables
- Lua - Metatables
- Lua - Chaining Metatables
- Lua Coroutines
- Lua - Coroutines
- Lua File Handling
- Lua - File I/O
- Lua - Opening Files
- Lua - Modes for File Access
- Lua - Reading Files
- Lua - Writing Files
- Lua - Closing Files
- Lua - Renaming Files
- Lua - Deleting Files
- Lua - File Buffers and Flushing
- Lua - Reading Files Line by Line
- Lua - Binary File Handling
- Lua - File Positioning
- Lua - Appending to Files
- Lua - Error Handling in File Operations
- Lua - Checking if File exists
- Lua - Checking if File is Readable
- Lua - Checking if File is Writable
- Lua - Checking if File is ReadOnly
- Lua - File Descriptors
- Lua - Creating Temporary Files
- Lua - Working with Large Files
- Lua Advanced
- Lua - Error Handling
- Lua - Debugging
- Lua - Garbage Collection
- Lua - Object Oriented
- Lua - Web Programming
- Lua - Database Access
- Lua - Game Programing
- Lua Useful Resources
- Lua - Quick Guide
- Lua - Useful Resources
- Lua - Discussion
Lua - Coroutines
Introduction
Coroutines are collaborative in nature, which allows two or more methods to execute in a controlled manner. With coroutines, at any given time, only one coroutine runs and this running coroutine only suspends its execution when it explicitly requests to be suspended.
The above definition may look vague. Let us assume we have two methods, one the main program method and a coroutine. When we call a coroutine using resume function, its starts executing and when we call yield function, it suspends executing. Again the same coroutine can continue executing with another resume function call from where it was suspended. This process can continue till the end of execution of the coroutine.
Functions Available in Coroutines
The following table lists all the available functions for coroutines in Lua and their corresponding use.
Sr.No. | Method & Purpose |
---|---|
1 |
coroutine.create (f) Creates a new coroutine with a function f and returns an object of type "thread". |
2 |
coroutine.resume (co [, val1, ...]) Resumes the coroutine co and passes the parameters if any. It returns the status of operation and optional other return values. |
3 |
coroutine.running () Returns the running coroutine or nil if called in the main thread. |
4 |
coroutine.status (co) Returns one of the values from running, normal, suspended or dead based on the state of the coroutine. |
5 |
coroutine.wrap (f) Like coroutine.create, the coroutine.wrap function also creates a coroutine, but instead of returning the coroutine itself, it returns a function that, when called, resumes the coroutine. |
6 |
coroutine.yield (...) Suspends the running coroutine. The parameter passed to this method acts as additional return values to the resume function. |
Example - Use of Coroutines
Let's look at an example to understand the concept of coroutines.
main.lua
-- create a coroutine co = coroutine.create(function (value1,value2) local tempvar3 = 10 print("coroutine section 1", value1, value2, tempvar3) -- yield the current execution local tempvar1 = coroutine.yield(value1+1,value2+1) tempvar3 = tempvar3 + value1 print("coroutine section 2",tempvar1 ,tempvar2, tempvar3) -- yield the current execution local tempvar1, tempvar2= coroutine.yield(value1+value2, value1-value2) tempvar3 = tempvar3 + value1 print("coroutine section 3",tempvar1,tempvar2, tempvar3) return value2, "end" end) -- resume the coroutines print("main", coroutine.resume(co, 3, 2)) print("main", coroutine.resume(co, 12,14)) print("main", coroutine.resume(co, 5, 6)) print("main", coroutine.resume(co, 10, 20))
Output
When we run the above program, we will get the following output−
coroutine section 1 3 2 10 main true 4 3 coroutine section 2 12 nil 13 main true 5 1 coroutine section 3 5 6 16 main true 2 end main false cannot resume dead coroutine
What Does the Above Example Do?
As mentioned before, we use the resume function to start the operation and yield function to stop the operation. Also, you can see that there are multiple return values received by resume function of coroutine.
First, we create a coroutine and assign it to a variable name co and the coroutine takes in two variables as its parameters.
When we call the first resume function, the values 3 and 2 are retained in the temporary variables value1 and value2 till the end of the coroutine.
To make you understand this, we have used a tempvar3, which is 10 initially and it gets updated to 13 and 16 by the subsequent calls of the coroutines since value1 is retained as 3 throughout the execution of the coroutine.
The first coroutine.yield returns two values 4 and 3 to the resume function, which we get by updating the input params 3 and 2 in the yield statement. It also receives the true/false status of coroutine execution.
Another thing about coroutines is how the next params of resume call is taken care of, in the above example; you can see that the variable the coroutine.yield receives the next call params which provides a powerful way of doing new operation with the retentionship of existing param values.
Finally, once all the statements in the coroutines are executed, the subsequent calls will return in false and "cannot resume dead coroutine" statement as response.
Another Coroutine Example
Let us look at a simple coroutine that returns a number from 1 to 5 with the help of yield function and resume function. It creates coroutine if not available or else resumes the existing coroutine.
main.lua
-- create a function to track coroutines function getNumber() local function getNumberHelper() co = coroutine.create(function () coroutine.yield(1) coroutine.yield(2) coroutine.yield(3) coroutine.yield(4) coroutine.yield(5) end) return co end if(numberHelper) then status, number = coroutine.resume(numberHelper); -- if coroutine is finished if coroutine.status(numberHelper) == "dead" then numberHelper = getNumberHelper() status, number = coroutine.resume(numberHelper); end return number else numberHelper = getNumberHelper() status, number = coroutine.resume(numberHelper); return number end end for index = 1, 10 do print(index, getNumber()) end
Output
When we run the above program, we will get the following output−
1 1 2 2 3 3 4 4 5 5 6 1 7 2 8 3 9 4 10 5
There is often a comparison of coroutines with the threads of multiprogramming languages, but we need to understand that coroutines have similar features of thread but they execute only one at a time and never execute concurrently.
We control the program execution sequence to meet the needs with the provision of retaining certain information temporarily. Using global variables with coroutines provides even more flexibility to coroutines.