
- Lua Tutorial
- Lua - Home
- Lua Basics
- Lua - Overview
- Lua - Environment
- Lua - Basic Syntax
- Lua - Comments
- Lua - Print Hello World
- Lua - Variables
- Lua - Data Types
- Lua - Operators
- Lua - Loops
- Lua - Generic For
- Lua - Decision Making
- Lua - Date and Time
- Lua Functions
- Lua - Functions
- Lua - Multiple Results
- Lua - Named Arguments
- Lua - Default/Optional Arguments
- Lua - Closures
- Lua - Uses of Closures
- Lua - Local Functions
- Lua - Anonymous Functions
- Lua - Functions in Table
- Lua - Proper Tail Calls
- Lua Strings
- Lua - Strings
- Lua - String Concatenation
- Lua - Loop Through String
- Lua - String to Int
- Lua - Split String
- Lua - Check String is NULL
- Lua Arrays
- Lua - Arrays
- Lua - Multi-dimensional Arrays
- Lua - Array Length
- Lua - Iterating Over Arrays
- Lua - Slicing Arrays
- Lua - Sorting Arrays
- Lua - Merging Arrays
- Lua - Sparse Arrays
- Lua - Searching Arrays
- Lua - Resizing Arrays
- Lua - Array to String Conversion
- Lua - Array as Stack
- Lua - Array as Queue
- Lua - Array with Metatables
- Lua - Immutable Arrays
- Lua - Shuffling Arrays
- Lua Iterators
- Lua - Iterators
- Lua - Stateless Iterators
- Lua - Stateful Iterators
- Lua - Built-in Iterators
- Lua - Custom Iterators
- Lua - Iterator Closures
- Lua - Infinite Iterators
- Lua - File Iterators
- Lua - Table Iterators
- Lua - Numeric Iterators
- Lua - Reverse Iterators
- Lua - Filter Iterators
- Lua - Range Iterators
- Lua - Chaining Iterators
- Lua Tables
- Lua - Tables
- Lua - Tables as Arrays
- Lua - Tables as Dictionaries
- Lua - Tables as Sets
- Lua - Table Length
- Lua - Table Iteration
- Lua - Table Constructors
- Lua - Loop through Table
- Lua - Merge Tables
- Lua - Nested Tables
- Lua - Accessing Table Fields
- Lua - Copy Table by Value
- Lua - Get Entries from Table
- Lua - Table Metatables
- Lua - Tables as Objects
- Lua - Table Inheritance
- Lua - Table Cloning
- Lua - Table Sorting
- Lua - Table Searching
- Lua - Table Serialization
- Lua - Weak Tables
- Lua - Table Memory Management
- Lua - Tables as Stacks
- Lua - Tables as Queues
- Lua - Sparse Tables
- Lua Lists
- Lua - Lists
- Lua - Inserting Elements into Lists
- Lua - Removing Elements from Lists
- Lua - Iterating Over Lists
- Lua - Reverse Iterating Over Lists
- Lua - Accessing List Elements
- Lua - Modifying List Elements
- Lua - List Length
- Lua - Concatenate Lists
- Lua - Slicing Lists
- Lua - Sorting Lists
- Lua - Reversing Lists
- Lua - Searching in Lists
- Lua - Shuffling List
- Lua - Multi-dimensional Lists
- Lua - Sparse Lists
- Lua - Lists as Stacks
- Lua - Lists as Queues
- Lua - Functional Operations on Lists
- Lua - Immutable Lists
- Lua - List Serialization
- Lua - Metatables with Lists
- Lua Modules
- Lua - Modules
- Lua - Returning Functions from Modules
- Lua - Returning Functions Table from Modules
- Lua - Module Scope
- Lua - SubModule
- Lua - Module Caching
- Lua - Custom Module Loaders
- Lua - Namespaces
- Lua - Singleton Modules
- Lua - Sharing State Between Modules
- Lua - Module Versioning
- Lua Metatables
- Lua - Metatables
- Lua - Chaining Metatables
- Lua Coroutines
- Lua - Coroutines
- Lua File Handling
- Lua - File I/O
- Lua - Opening Files
- Lua - Modes for File Access
- Lua - Reading Files
- Lua - Writing Files
- Lua - Closing Files
- Lua - Renaming Files
- Lua - Deleting Files
- Lua - File Buffers and Flushing
- Lua - Reading Files Line by Line
- Lua - Binary File Handling
- Lua - File Positioning
- Lua - Appending to Files
- Lua - Error Handling in File Operations
- Lua - Checking if File exists
- Lua - Checking if File is Readable
- Lua - Checking if File is Writable
- Lua - Checking if File is ReadOnly
- Lua - File Descriptors
- Lua - Creating Temporary Files
- Lua - Working with Large Files
- Lua Advanced
- Lua - Error Handling
- Lua - Debugging
- Lua - Garbage Collection
- Lua - Object Oriented
- Lua - Web Programming
- Lua - Database Access
- Lua - Game Programing
- Lua Useful Resources
- Lua - Quick Guide
- Lua - Useful Resources
- Lua - Discussion
Lua - Sharing States between Module
Sharing states between Module is very easy as Lua by default caches a module when it is loaded for the first time. If we are returning a table from a module, we can use to store common state and modify the same accordingly across the modules. We can create a sharable table as well instead of creating a shared module. In this chapter, we're discussing the approaches to share data across the modules.
Example - Sharable Module Approach
This is much easier and idiomatic approch to manage states by returning a table as module. As a module is loaded only once, it will be cached and the table will be used commonly across the modules to share data.
Let's create a file shared.lua in current directory to act as application's shared data table.
shared.lua
-- common table local state = { counter = 0, message = "Hello from shared state!" } function state.increment() state.counter = state.counter + 1 end -- return the table as module return state
Create modules which are to use the shared module.
module1.lua
local shared = require("shared") print("Module 1 - Current counter:", shared.counter) shared.increment() print("Module 1 - Counter after increment:", shared.counter) print("Module 1 - Message:", shared.message)
module2.lua
local shared = require("shared") print("Module 2 - Current counter:", shared.counter) shared.message = "State updated by Module 2!" print("Module 2 - Updated message:", shared.message)
Let's now import both above modules in main code and see the impact of share module state.
main.lua
-- load both modules require("module1") require("module2") -- load shared module local shared = require("shared") -- print the final values print("Main - Final counter:", shared.counter) print("Main - Final message:", shared.message)
Output
When we run the above program, we will get the following output−
Module 1 - Current counter: 0 Module 1 - Counter after increment: 1 Module 1 - Message: Hello from shared state! Module 2 - Current counter: 1 Module 2 - Updated message: State updated by Module 2! Main - Final counter: 1 Main - Final message: State updated by Module 2!
As evident from the output, the shared modules is loaded in three modules module1, module2 and main but each module receives the same shared table. Changes done in one module are reflecting in other modules. This makes shared modules truely a sharable module.
Example - Sharable Table Approach
We can create a global shared table as well.
Let's create a file shared.lua in current directory to act as application's shared data table.
shared.lua
-- common table _SHARED = _SHARED or { counter = 0, message ="Hello from shared state!" } function incrementCounter() _SHARED.counter = _SHARED.counter + 1 end
Create modules which are to use the shared module.
module1.lua
require("shared") print("Module 1 - Current global counter:", _SHARED.counter) incrementCounter() print("Module 1 - Counter after increment:", _SHARED.counter) print("Module 1 - Message:", _SHARED.message)
module2.lua
require("shared") print("Module 2 - Current global counter:", _SHARED.counter) _SHARED.message = "State updated by Module 2!" print("Module 2 - Updated message:", _SHARED.message)
Let's now import both above modules in main code and see the impact of share module state.
main.lua
-- load both modules and the shared one require("module1") require("module2") require("shared") -- print the final values print("Main - Final global counter:", _SHARED.counter) print("Main - Final global message:", _SHARED.message)
Output
When we run the above program, we will get the following output−
Module 1 - Current global counter: 0 Module 1 - Counter after increment: 1 Module 1 - Message: Hello from shared state! Module 2 - Current global counter: 1 Module 2 - Updated message: State updated by Module 2! Main - Final global counter: 1 Main - Final global message: State updated by Module 2!
As evident from the output, the shared modules is loaded in three modules module1, module2 and main and are using a globally shared table. This approach is lesser preferred as it depends upon global variable _SHARED.
Preference of returning table instead of global table
Namespace Management − As each module provides its own namespace, naming conflicts are rare.
Dependency Management − When a shared module is explicitly loaded using require, it is easily trackable. In case of global, it is difficult to maintain.
Testing − Modules with external dependency are easier to test as compared to using global one.