
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Exponential Distribution
Exponential Distribution in NumPy
The Exponential Distribution is a continuous probability distribution used to model the time between independent events that occur at a constant average rate.
It is defined by a single parameter (lambda), which is the rate parameter, where the mean time between events is 1/. This distribution is often used in scenarios such as the time between arrivals in a queue.
For example, if events occur on average every 5 minutes (=1/5), the exponential distribution models the time between these events.
The probability density function (PDF) of the exponential distribution is defined as −
f(x; ) = * exp(-x) for x 0, 0 otherwise
Where,
- : Rate parameter (inverse of the mean).
- x: Time between events.
- exp: Exponential function.
Exponential Distributions in NumPy
NumPy provides the numpy.random.exponential() function to generate samples from an exponential distribution. You can specify the scale parameter (1/) and the size of the generated samples.
Example
In this example, we generate 10 random samples from an exponential distribution with a rate parameter =2 (scale=0.5) −
import numpy as np # Generate 10 random samples from an exponential distribution with =2 (scale=0.5) samples = np.random.exponential(scale=0.5, size=10) print("Random samples from exponential distribution:", samples)
Following is the output obtained −
Random samples from exponential distribution: [0.49251018 0.14301367 0.48682864 0.09396999 0.11923932 0.28674142 0.14285472 0.11916798 1.59846326 0.27175065]
Visualizing Exponential Distributions
Visualizing exponential distributions helps to understand their properties better. We can use libraries such as Matplotlib to create histograms that display the distribution of generated samples.
Example
In the following example, we are first generating 1000 random samples from an exponential distribution with =2 (scale=0.5). We are then creating a histogram to visualize this distribution −
import numpy as np import matplotlib.pyplot as plt # Generate 1000 random samples from an exponential distribution with =2 (scale=0.5) samples = np.random.exponential(scale=0.5, size=1000) # Create a histogram to visualize the distribution plt.hist(samples, bins=30, edgecolor='black', density=True) plt.title('Exponential Distribution') plt.xlabel('Time between events') plt.ylabel('Frequency') plt.show()
The histogram shows the frequency of the time between events in the exponential trials. The bars represent the probability of each possible outcome, which forms the characteristic shape of an exponential distribution −

Applications of Exponential Distributions
Exponential distributions are used in various fields to model the time between events in a Poisson process. Here are a few practical applications −
- Reliability Analysis: Modeling the time between failures of mechanical systems.
- Queuing Theory: Modeling the time between arrivals of customers in a queue.
- Survival Analysis: Modeling the time until an event, such as death or failure, occurs.
Generating Cumulative Exponential Distributions
Sometimes, we are interested in the cumulative distribution function (CDF) of an exponential distribution, which gives the probability of getting up to and including x events in the interval.
NumPy does not have a built-in function for the CDF of an exponential distribution, but we can calculate it using a loop and the scipy.stats.expon.cdf() function from the SciPy library.
Example
Following is an example to generate cumulative exponential distribution in NumPy −
import numpy as np import matplotlib.pyplot as plt from scipy.stats import expon # Define the rate parameter lam = 2 # Generate the cumulative distribution function (CDF) values x = np.linspace(0, 3, 100) cdf = expon.cdf(x, scale=1/lam) # Plot the CDF plt.plot(x, cdf, marker='o', linestyle='-', color='b') plt.title('Cumulative Exponential Distribution') plt.xlabel('Time between events') plt.ylabel('Cumulative probability') plt.grid(True) plt.show()
The plot shows the cumulative probability of getting up to and including each time between events in the exponential trials. The CDF is a smooth curve that increases to 1 as the time between events increases −

Properties of Exponential Distributions
Exponential distributions have several key properties, they are −
- Memoryless Property: The probability of an event occurring in the future is independent of the time that has already passed.
- Mean and Variance: The mean of an exponential distribution is 1/, and the variance is 1/2.
- Skewness: The distribution is skewed to the right, with a long tail.
Exponential Distribution for Hypothesis Testing
Exponential distributions are often used in hypothesis testing, particularly in tests for the time between events.
One common test is the exponential test, which is used to determine if the observed time between events is significantly different from the expected time. Here is an example using the scipy.stats.expon() function:
Example
In this example, we perform an exponential test to determine if the observed time between events (0.8) is significantly different from the expected rate (=2). The p-value indicates the probability of obtaining a result at least as extreme as the observed result, assuming the null hypothesis is true −
from scipy.stats import expon # Observed time between events observed_time = 0.8 # Expected rate parameter () expected_rate = 2 # Perform the exponential test p_value = expon.sf(observed_time, scale=1/expected_rate) print("P-value from exponential test:", p_value)
The output obtained is as shown below −
P-value from exponential test: 0.20189651799465538
Seeding for Reproducibility
To ensure reproducibility, you can set a specific seed before generating exponential distributions. This ensures that the same sequence of random numbers is generated each time you run the code.
Example
By setting the seed, you ensure that the random generation produces the same result every time the code is executed as shown in the example below −
import numpy as np # Set the seed for reproducibility np.random.seed(42) # Generate 10 random samples from an exponential distribution with =2 (scale=0.5) samples = np.random.exponential(scale=0.5, size=10) print("Random samples with seed 42:", samples)
The result produced is as follows −
Random samples with seed 42: [0.23463404 1.50506072 0.65837285 0.45647128 0.08481244 0.08479815 0.02991938 1.00561543 0.45954108 0.61562503]