
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Hyperbolic ufunc
Hyperbolic Universal Functions (ufunc)
Hyperbolic universal functions (ufuncs) in NumPy are functions that perform hyperbolic operations on each element of an array. These functions can calculate various hyperbolic values such as hyperbolic sine, cosine, and tangent, and their inverses for each element in the input array.
These functions operate element-wise on arrays and are optimized for performance, making them much faster than using Python loops.
NumPy Hyperbolic Sine Function
The numpy.sinh() function is used to calculate the hyperbolic sine of each element in an array.
The hyperbolic sine function is defined as sinh(x) = (ex - e-x) / 2.
Example
In the following example, we use the numpy.sinh() function to calculate the hyperbolic sine of each element in an array −
import numpy as np # Define an array of values values = np.array([0, 1, 2]) # Calculate the hyperbolic sine of each value sinh_values = np.sinh(values) print("Hyperbolic sine values:", sinh_values)
The output obtained is as follows −
Hyperbolic sine values: [0. 1.17520119 3.62686041]
NumPy Hyperbolic Cosine Function
The numpy.cosh() function is used to calculate the hyperbolic cosine of each element in an array.
The hyperbolic cosine function is defined as cosh(x) = (ex + e-x) / 2.
Example
In the following example, we use the numpy.cosh() function to calculate the hyperbolic cosine of each element in an array −
import numpy as np # Define an array of values values = np.array([0, 1, 2]) # Calculate the hyperbolic cosine of each value cosh_values = np.cosh(values) print("Hyperbolic cosine values:", cosh_values)
This will produce the following result −
Hyperbolic cosine values: [1. 1.54308063 3.76219569]
NumPy Hyperbolic Tangent Function
The numpy.tanh() function is used to calculate the hyperbolic tangent of each element in an array.
The hyperbolic tangent function is defined as tanh(x) = sinh(x) / cosh(x).
Example
In the following example, we use the numpy.tanh() function to calculate the hyperbolic tangent of each element in an array −
import numpy as np # Define an array of values values = np.array([0, 1, 2]) # Calculate the hyperbolic tangent of each value tanh_values = np.tanh(values) print("Hyperbolic tangent values:", tanh_values)
The result produced is as follows −
Hyperbolic tangent values: [0. 0.76159416 0.96402758]
NumPy also provides functions for calculating the inverse hyperbolic functions (arcsinh, arccosh, and arctanh) of array elements. These functions return the value whose hyperbolic sine, cosine, or tangent is the given number.
NumPy Inverse Hyperbolic Sine Function
The numpy.arcsinh() function is used to calculate the inverse hyperbolic sine of each element in an array.
The inverse hyperbolic sine function is defined as arcsinh(x) = ln(x + sqrt(x2 + 1)).
Example
In this example, we use the numpy.arcsinh() function to calculate the inverse hyperbolic sine of each element in an array −
import numpy as np # Define an array of values values = np.array([0, 1, 2]) # Calculate the inverse hyperbolic sine of each value arcsinh_values = np.arcsinh(values) print("Inverse hyperbolic sine values:", arcsinh_values)
We get the output as shown below −
Inverse hyperbolic sine values: [0. 0.88137359 1.44363548]
NumPy Inverse Hyperbolic Cosine Function
The numpy.arccosh() function is used to calculate the inverse hyperbolic cosine of each element in an array.
The inverse hyperbolic cosine function is defined as arccosh(x) = ln(x + sqrt(x2 - 1)).
Example
In this example, we use the numpy.arccosh() function to calculate the inverse hyperbolic cosine of each element in an array −
import numpy as np # Define an array of values values = np.array([1, 2, 3]) # Calculate the inverse hyperbolic cosine of each value arccosh_values = np.arccosh(values) print("Inverse hyperbolic cosine values:", arccosh_values)
The output obtained is as follows −
Inverse hyperbolic cosine values: [0. 1.3169579 1.76274717]
NumPy Inverse Hyperbolic Tangent Function
The numpy.arctanh() function is used to calculate the inverse hyperbolic tangent of each element in an array.
The inverse hyperbolic tangent function is defined as arctanh(x) = 0.5 * ln((1 + x) / (1 - x)).
Example
In the example below, we use the numpy.arctanh() function to calculate the inverse hyperbolic tangent of each element in an array −
import numpy as np # Define an array of values values = np.array([0, 0.5, 0.9]) # Calculate the inverse hyperbolic tangent of each value arctanh_values = np.arctanh(values) print("Inverse hyperbolic tangent values:", arctanh_values)
The output produced is as follows −
Inverse hyperbolic tangent values: [0. 0.54930614 1.47221949]