
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Poisson Distribution
What is a Poisson Distribution?
The Poisson distribution is characterized by a single parameter, (lambda), which is the average number of events in the given interval. The probability mass function (PMF) of the Poisson distribution gives the probability of observing k events in the interval and is defined as −
P(X = k) = (k * e(-)) / k!
Where,
- : It is the average number of events in the interval.
- k: It represents the number of events.
- e: It is the Euler's number (approximately 2.71828).
Poisson Distributions in NumPy
NumPy provides the numpy.random.poisson() function to generate samples from a Poisson distribution. You can specify the mean rate () and the size of the generated samples.
Example
In this example, we generate 10 random samples from a Poisson distribution with a mean rate of 3 events per interval −
import numpy as np # Generate 10 random samples from a Poisson distribution with =3 samples = np.random.poisson(lam=3, size=10) print("Random samples from Poisson distribution:", samples)
Following is the output obtained −
Random samples from Poisson distribution: [3 1 2 2 1 1 2 5 5 3]
Visualizing Poisson Distributions
Visualizing Poisson distributions helps to understand their properties better. We can use libraries such as Matplotlib to create histograms that display the distribution of generated samples.
Example
In the following example, we are first generating random samples from a Poisson distribution with =3. We then create a histogram to visualize this distribution −
import numpy as np import matplotlib.pyplot as plt # Generate 1000 random samples from a Poisson distribution with =3 samples = np.random.poisson(lam=3, size=1000) # Create a histogram to visualize the distribution plt.hist(samples, bins=range(10), edgecolor='black', density=True) plt.title('Poisson Distribution') plt.xlabel('Number of events') plt.ylabel('Frequency') plt.xticks(range(10)) plt.show()
The histogram shows the frequency of the number of events in the Poisson trials. The bars represent the probability of each possible outcome, which forms the characteristic shape of a Poisson distribution −

Applications of Poisson Distributions
Poisson distributions are used in various fields to model the occurrence of events over time or space. Here are a few practical applications −
- Traffic Engineering: Modeling the number of cars passing through a checkpoint.
- Finance: Modeling the number of trades executed on a stock exchange.
- Queueing Theory: Modeling the number of customers arriving at a service point.
Generating Cumulative Poisson Distributions
Sometimes, we are interested in the cumulative distribution function (CDF) of a Poisson distribution, which gives the probability of getting up to and including k events in the interval.
NumPy does not have a built-in function for the CDF of a Poisson distribution, but we can calculate it using a loop and the scipy.stats.poisson.cdf() function from the SciPy library.
Example
In the example below, we are generating cumulative poisson distribution in NumPy −
import numpy as np import matplotlib.pyplot as plt from scipy.stats import poisson # Define the mean rate lam = 3 # Generate the cumulative distribution function (CDF) values x = np.arange(0, 10) cdf = poisson.cdf(x, lam) # Plot the CDF plt.plot(x, cdf, marker='o', linestyle='-', color='b') plt.title('Cumulative Poisson Distribution') plt.xlabel('Number of events') plt.ylabel('Cumulative probability') plt.grid(True) plt.show()
The plot shows the cumulative probability of getting up to and including each number of events in the Poisson trials. The CDF is a step function that increases to 1 as the number of events increases −

Properties of Poisson Distributions
Poisson distributions have several key properties, they are −
- Discrete Nature: The Poisson distribution is discrete, meaning it only takes on integer values.
- Mean and Variance: The mean and variance of a Poisson distribution are both equal to .
- Skewness: The distribution is skewed to the right, especially for smaller values of .
Poisson Distribution for Hypothesis Testing
Poisson distributions are often used in hypothesis testing, particularly in tests for counts of events.
One common test is the Poisson test, which is used to determine if the observed number of events is significantly different from the expected number. Here is an example using the scipy.stats.poisson() function.
Example
In this example, we perform a Poisson test to determine if the observed number of events (10) is significantly different from the expected rate (5). The p-value indicates the probability of obtaining a result at least as extreme as the observed result, assuming the null hypothesis is true −
from scipy.stats import poisson # Observed number of events observed_events = 10 # Expected number of events (mean rate ) expected_rate = 5 # Perform the Poisson test p_value = poisson.sf(observed_events-1, expected_rate) print("P-value from Poisson test:", p_value)
The output obtained is as shown below −
P-value from Poisson test: 0.03182805730620481
Seeding for Reproducibility
To ensure reproducibility, you can set a specific seed before generating Poisson distributions. This ensures that the same sequence of random numbers is generated each time you run the code.
Example
By setting the seed, you ensure that the random generation produces the same result every time the code is executed as shown in the example below −
import numpy as np # Set the seed for reproducibility np.random.seed(42) # Generate 10 random samples from a Poisson distribution with =3 samples = np.random.poisson(lam=3, size=10) print("Random samples with seed 42:", samples)
The result produced is as follows −
Random samples with seed 42: [4 1 3 3 2 3 2 3 0 2]