
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Uniform Distribution
What is a Uniform Distribution?
A uniform distribution is a type of probability distribution where all outcomes are equally likely. This means that the probability of any given outcome is constant across the range of possible outcomes.
Uniform distributions can be continuous or discrete. In a continuous uniform distribution, the outcomes can take any value within a specified range. In contrast, a discrete uniform distribution has a finite set of possible outcomes.
Uniform Distributions with NumPy
NumPy provides the numpy.random.uniform() function to generate samples from a continuous uniform distribution. This function allows you to specify the range and size of the generated samples.
Example
In this example, we generate 10 random samples from a uniform distribution between 0 and 1 −
import numpy as np # Generate 10 random samples from a uniform distribution between 0 and 1 samples = np.random.uniform(0, 1, 10) print("Random samples from uniform distribution:", samples)
Following is the output obtained −
Random samples from uniform distribution: [0.70748409 0.45654756 0.73426382 0.15580835 0.70294526 0.12503631 0.40303738 0.9862709 0.4923119 0.44059809]
Visualizing Uniform Distributions
Visualizing uniform distributions helps to understand their properties better. We can use libraries such as Matplotlib to create histograms that display the distribution of generated samples.
Example
In the following example, we are generating 1000 random samples from a uniform distribution between 0 and 1 and then create a histogram to visualize this distribution −
import numpy as np import matplotlib.pyplot as plt # Generate 1000 random samples from a uniform distribution between 0 and 1 samples = np.random.uniform(0, 1, 1000) # Create a histogram to visualize the distribution plt.hist(samples, bins=30, edgecolor='black') plt.title('Uniform Distribution') plt.xlabel('Value') plt.ylabel('Frequency') plt.show()
The histogram shows that the samples are uniformly distributed between 0 and 1, with an approximately equal frequency for each bin −

Applications of Uniform Distributions
Uniform distributions are used in various fields, including computer simulations, Monte Carlo methods, and random sampling. Here are a few practical applications −
- Simulation: Uniform distributions are used to simulate random events in models where each outcome is equally likely.
- Random Sampling: Uniform distributions are used to generate random samples from a population for statistical analysis.
- Monte Carlo Methods: Uniform distributions are used in Monte Carlo simulations to generate random numbers for estimating complex integrals and solving problems in physics and finance.
Generating Discrete Uniform Distributions
NumPy also allows generating samples from a discrete uniform distribution using the numpy.random.randint() function. This function generates random integers within a specified range.
Example
In this example, we generate 10 random integers between 1 and 10, inclusive −
import numpy as np # Generate 10 random integers between 1 and 10 samples = np.random.randint(1, 11, 10) print("Random samples from discrete uniform distribution:", samples)
Following is the output obtained −
Random samples from discrete uniform distribution: [ 7 3 9 10 9 4 8 4 1 7]
Properties of Uniform Distributions
Uniform distributions have several key properties, they are as follows −
- Constant Probability Density: In a continuous uniform distribution, the probability density function (PDF) is constant across the specified range.
- Equal Likelihood: All outcomes within the range are equally likely.
- Mean and Variance: For a continuous uniform distribution between a and b, the mean is (a + b) / 2 and the variance is ((b - a)2) / 12.
Calculating Mean and Variance
You can calculate the mean and variance of a uniform distribution using simple formulas. Let us see how to calculate the mean and variance for a uniform distribution between a and b.
Example
In this example, the mean and variance of the uniform distribution between 0 and 1 are calculated −
import numpy as np # Define the range of the uniform distribution a = 0 b = 1 # Calculate the mean and variance mean = (a + b) / 2 variance = ((b - a) ** 2) / 12 print("Mean:", mean) print("Variance:", variance)
Following is the output obtained −
Mean: 0.5 Variance: 0.08333333333333333
Uniform Distribution in Multidimensional Arrays
NumPy can generate uniform distributions for multidimensional arrays as well. Here is an example:
Example
In this example, a 3x3 array of random samples from a uniform distribution between 0 and 1 is generated −
import numpy as np # Generate a 3x3 array of random samples from a uniform distribution between 0 and 1 samples = np.random.uniform(0, 1, (3, 3)) print("3x3 array of random samples from uniform distribution:", samples)
The output obtained is as shown below −
3x3 array of random samples from uniform distribution: [[0.18528116 0.65725829 0.06597822] [0.73183704 0.05931206 0.65555952] [0.92479579 0.89807463 0.02624335]]
Seeding for Reproducibility
To ensure reproducibility, you can set a specific seed before generating uniform distributions. This ensures that the same sequence of random numbers is generated each time you run the code.
Example
By setting the seed, you ensure that the random generation produces the same result every time the code is executed as shown in the following example −
import numpy as np # Set the seed for reproducibility np.random.seed(42) # Generate 10 random samples from a uniform distribution between 0 and 1 samples = np.random.uniform(0, 1, 10) print("Random samples with seed 42:", samples)
Following is the output obtained −
Random samples with seed 42: [0.37454012 0.95071431 0.73199394 0.59865848 0.15601864 0.15599452 0.05808361 0.86617615 0.60111501 0.70807258]