
- OS - Home
- OS - Needs
- OS - Overview
- OS - History
- OS - Components
- OS - Structure
- OS - Architecture
- OS - Services
- OS - Properties
- OS - TAT & WAT
- OS Processes
- OS - Processes
- OS - Process Scheduling
- OS - Scheduling Algorithms
- FCFS Scheduling Algorithm
- SJF Scheduling Algorithm
- Round Robin Scheduling Algorithms
- HRRN Scheduling Algorithms
- Priority Scheduling Algorithms
- Multilevel Queue Scheduling
- Context Switching
- Operations on Processes
- Lottery Process Scheduling
- Predicting Burst Time SJF Scheduling
- Race Condition Vulnerability
- Critical Section Synchronization
- Mutual Exclusion Synchronization
- Process Control Block
- Inter Process Communication
- Preemptive and Non-Preemptive Scheduling
- Operating System - Deadlock
- Introduction to Deadlock in Operating System
- Conditions for Deadlock in Operating System
- OS Synchronization
- Operating System - Process Synchronization
- Operating System - Critical Section
- Operating System - Semaphores
- Operating System - Counting Semaphores
- Operating System - Mutex
- Operating System - Lock Variable in Process Synchronization
- Operating System - Turn Variable in Process Synchronization
- Operating System - Bounded Buffer Problem
- Operating System - Reader Writer Locks in Process Synchronization
- Operating System - Test Set Lock in Process Synchronization
- Operating System - Peterson Solution in Process Synchronization
- Operating System - Monitors in Process Synchronization
- Operating System - Sleep and Wake in Process Synchronization
- OS Memory Management
- OS - Memory Management
- OS - Virtual Memory
- OS Storage Management
- File Systems in Operating System
- Linked Index Allocation in Operating System
- Indexed Allocation in Operating System
- Structures of Directory in Operating System
- File Attributes in Operating System
- Operating System - Page Replacement
- Operating Systems - Thrashing
- Belady’s Anomaly in Page Replacement Algorithms
- Optimal Page Replacement Algorithm
- Operating System - Types
- Types of Operating System
- Batch Processing Operating System
- Multiprocessing Operating System
- Hybrid Operating System
- Monolithic Operating System
- Zephyr Operating System
- Nix Operating System
- Blackberry Operating System
- Garuda Operating System
- Tails Operating System
- Clustered Operating System
- Haiku Operating System
- AIX Operating System
- Solus Operating system
- Tizen Operating System
- Bharat Operating System
- Fire Operating System
- Bliss Operating System
- VxWorks Operating System
- Embedded Operating System
- Single User Operating System
- OS Miscellaneous
- OS - Multi-threading
- OS - I/O Hardware
- OS - I/O Software
- OS - Security
- OS - Linux
- OS Useful Resources
- OS - Quick Guide
- OS - Useful Resources
- OS - Discussion
OS Exams Questions with Answers
These selected questions and answers are prepared from Operating Systems Exam point of view and will also help in quick revision to get good marks in Operating Systems Examination. These questions has been prepared for the computer science graduates (B.C.A, M.C.A, B.Tech, B.E. and so...), to help them understand and revise the basic to advanced concepts related to Operating System.
Following is the selected list of questions and their answers and will help in quick revision to get good marks in Operating Systems Examination.
Operating Systems Overview
What is the relationship between operating systems and computer hardware?
How Buffering can improve the performance of a Computer system?
What are the primary differences between Network Operating System and Distributed Operating System?
Operating Systems Process
Operating Systems Types
What are the differences between Batch processing system and Real Time Processing System?
What are the differences between Real Time System and Timesharing System?
What are the differences etween multiprocessing and multiprogramming?
Operating Systems Process Scheduling
Explain time slicing. How its duration affects the overall working of the system.
Explain pseudo parallelism? Describe the process model that makes parallelism easier to deal with.